

PRODUCT TECHNICAL DATASHEET

HUS3 Screw anchor

Update: Dec-25

Steel-to-concrete
Steel-to-masonry
Metal decks

Page no: 04 Page no: 14

Page no: 19

HUS3 Screw anchors

Anchor version

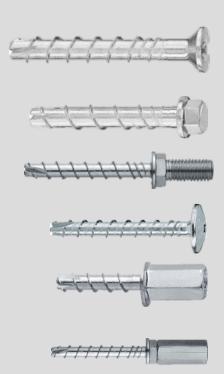
- HUS3-H (6)
- HUS3-C (6)
- HUS3-A (6)
- HUS3-P (6)
- HUS3-PL (6)
- HUS3-PS (6)
- HUS3-IQ (6)
- HUS3-I (6)
- HUS3-I Flex (6)
- HUS3-IF Flex (6)

Linked to Instruction or use (IFU) and Hilti webpage

Anchor size			6		
	Н		IQ	I(F) Flex	Α
	<u>IFU HUS3-H</u>	IFU HUS3-I	IFU HUS3-IQ	IFU HUS3-I(F) Flex	IFU HUS3-A
HUS3	С	Р	PL	PS	
	IFU HUS3-C	IFU HUS3-P	IFU HUS3-PL	IFU HUS3-PS	-

The instructions for use can be viewed using the link in the instructions for use table or the QR code/link in the Hilti webpage table.

Link to Hilti Webpage


HUS3-H	HUS3-I	HUS3-IQ	HUS3-I Flex	HUS3-IF Flex	HUS3-A	HUS3-C
	見談回					
HUS3-P	HUS3-PL	HUS3-PS				

PRODUCT TECHNICAL DATASHEET

HUS3 Screw anchor

Steel-to-concrete Update: Dec-25

HUS3 Screw anchor for use in concrete

High performance screw anchor for single point fastening

Anchor version		Benefits
	HUS3-H (6)	 High productivity - less drilling and fewer operations than with conventional anchors
	HUS3-C (6)	 ETA approval for cracked and uncracked concrete
	HUS3-A (6)	- ETA approval for Seismic C1
	HUS3-P (6)	 High loads (Reliable and easy to set anchor)
	(,,	- Small edge and spacing distance
	HUS3-PL (6)	 HUS3-IF Flex with multilayer coatings for additional corrosion protection
	HUS3-PS (6)	- No cleaning required
	HUS3-I (6)	 Forged-on washer and hexagon head with no protruding thread
	()	- Through fastening
	HUS3-I Flex (6)	
	HUS3-IF Flex (6)	

5

Linked Approvals/Certificates and Instructions for use

Base material

Concrete (uncracked)

Concrete (cracked)

Load conditions

Static / quasi-static

Other information

Seismic, C C1

Fire resistance

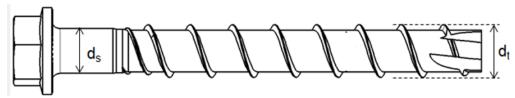
Drilling, cleaning, setting

Hammer drilled holes

PROFIS Engineering software

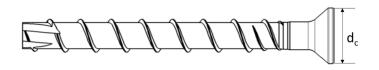
Steel to concrete connection Handbook

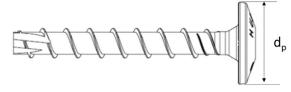
Approvals/certificates


Approval no	Application / loading condition	Authority / Laboratory	Date of issue	
ETA-13/1038	Static and quasi-static / Seismic / Fire	DIBt, Berlin	23-09-2025	

6

Fastener special dimensions

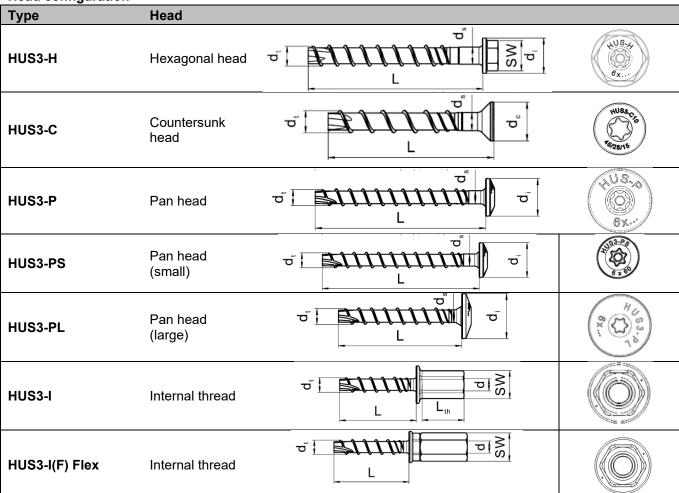

Туре	HU	S3	Н	С	A	PL	Р	PS	ı	I(F) Flex
Diameter						•	5			
Nominal length	L	[mm]	40-120	40-70	35-55	60	40-80	40-60	35-55	35-55
Threaded outer diameter	dt	[mm]		7,85						
Shaft diameter	ds	[mm]		6,15						
Diameter of integrated washer	di	[mm]	16,5	-	-	-	-	-	-	-



HUS3-H

Туре	HUS3	С	PL	Р	PS		
Diameter	·	6					
Countersunk heigt	h _c [mm]	4,0	-	-	-		
Diameter of the countersunk	d _c [mm]	11,5	-	-	-		
Pan head diameter	d _p [mm]	-	21,8	17,6	13,3		

7



HUS3-C

HUS3-PL, HUS3-P, HUS3-PS

Head configuration

Screw length and thickness of fixture for HUS3

Fastener size		6									
		н	С	Α	I, I(F) Flex	Н	С	Α	I, I(F) Flex	Р	PS PL
Nominal embedment depth [mm]		h _{nom1} 40							nom2 55		
					Т	hickne	ss of fixtu	ıre [mm]			
		t _{fix1}	t _{fix1}	t _{fix1}	t _{fix1}	t _{fix2}					
	40	-	-	0	0	-	-	-	-	-	-
	45	5	5	5	5	-	-	-	-	-	-
	55	-	-	15	15	-	-	0	0	-	-
	60	20	20	-	-	5	5	-	-	5	5
	70	-	30	-	-	ı	15	ı	-	ı	-
Longth of corous [mm]	80	40	-	-	-	25	ı	ı	-	25	-
Length of screw [mm]	100	60	-	-	-	45	ı	ı	-	ı	-
	120	80	-	-	-	65	ı	ı	-	ı	-
	135	-	-	95	-	ı	ı	80	-	ı	-
	155	-	-	115	-	ı	ı	100	-	ı	-
	175	-	-	135	-	ı	ı	120	-	ı	-
	195	-	-	155	-	-	-	140	-	•	-

Static and quasi-static loading based on ETA-13/1038. Design according to EN 1992-4

All data in this section applies to:

- Correct setting (See setting instruction)
- For a single anchor
- No edge distance and spacing influence (see table with characteristic distances)
- Characteristic spacing and edge distance for splitting failure apply only for uncracked concrete
- For cracked concrete only the characteristic spacing and edge distance for concrete cone failure are decisive
- Minimum base material thickness (see table)
- Embedment depth, as specified in the table of this section
- Anchor material, as specified in the tables of this section
- Concrete C20/25
- Hammer drilled holes
- Recommended loads: With overall partial safety factor for action y = 1,4.

For specific design cases refer to **PROFIS Engineering**.

Design resistance

Туре	HUS3-		H, C, A, I, I(F) Flex			P, PS, PL			
Anchor size				6					
Nominal embedment depth	h _{nom}	[mm]		om1 .0	h _{nom2} 55				
Uncracked concrete									
Tension	N_{Rd}	[kN]	3,9	3,9	5,0	4,2			
Shear	V_{Rd}	[kN]	5,4	5,4	8,3	8,3			
Cracked concrete									
Tension	N_{Rd}	[kN]	1,4	1,4	3,3	3,3			
Shear	V_{Rd}	[kN]	3,8	3,8	8,3	8,3			

Recommended loads

Туре	HUS3-		H, C, A, I, I(F) Flex			P, PS, PL			
Anchor size				6					
Nominal embedmenth	h	[mm]	hn	om1	h _{nom2}				
depth	h _{nom}	[mm]	4	.0	55				
Uncracked concrete									
Tension	N_{rec}	[kN]	2,8	2,8	3,6	3,0			
Shear	V_{rec}	[kN]	3,8	3,8	6,0	6,0			
Cracked concrete									
Tension	Nrec	[kN]	1,0	1,0	2,4	2,4			
Shear	V _{rec}	[kN]	2,7	2,7	6,0	6,0			

Seismic loading based on ETA-13/1038. Design according to EN 1992-4

All data in this section applies to:

- Correct setting (See setting instruction)
- For a single anchor
- No edge distance and spacing influence (see table with characteristic distances)
- Characteristic spacing and edge distance for splitting failure apply only for uncracked concrete
- For cracked concrete only the characteristic spacing and edge distance for concrete cone failure are decisive
- Minimum base material thickness (see table)
- Embedment depth, as specified in the table of this section
- Anchor material, as specified in the tables of this section
- Concrete C20/25
- Hammer drilled holes
- $\alpha_{gap} = 0.5$ (without using Hilti filling set)

For specific design cases refer to **PROFIS Engineering**.

Design resistance in case of seismic performance category C1

Dough rociotance in eace of colonia performance category of									
Туре	Н	US3	H, C, A, I, I(F) Flex, P, PS, PL						
Anchor size		6							
Naminal ambadment denth	h	[mm]	h _{nom1}	h _{nom2}					
Nominal embedment depth	h _{nom}	[mm]	40	55					
Effective anchorage depth	h _{ef}	[mm]	30,0	42,0					
Tension	N _{Rd,seis}	[LAN]]	1,4	2,2					
Shear	$V_{\text{Rd,seis}}$	– [kN]	1,7	1,7					

Fire resistance based on ETA-13/1038. Design according to EN 1992-4

All data in this section applies to:

- Correct setting (See setting instruction)
- For a single anchor
- No edge distance and spacing influence (see table with characteristic distances)
- Characteristic spacing and edge distance for splitting failure apply only for uncracked concrete
- For cracked concrete only the characteristic spacing and edge distance for concrete cone failure are decisive
- Minimum base material thickness (see table)
- Embedment depth, as specified in the table of this section
- Anchor material, as specified in the tables of this section
- Concrete C20/25
- Hammer drilled holes
- With overall partial safety factor for resistance $\gamma_{M,fi} = 1.0$

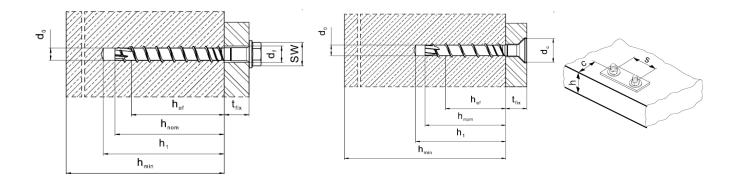
For specific design cases refer to **PROFIS Engineering**.

Design resistance

Туре	HUS	33-	H, C, A, I, I(F) F	lex, P, PS, PL
Anchor size			6	
Nominal embedment	h	[mm]	h _{nom1}	h _{nom2}
depth	h _{nom}	[mm]	40	55
Fire exposure R30				
Tension	$N_{Rd,fi}$	[kN]	0,5	1,5
Shear	$V_{\text{Rd,fi}}$	[kN]	0,5	1,6
Fire exposure R60				
Tension	$N_{Rd,fi}$	[kN]	0,5	1,2
Shear	$V_{Rd,fi}$	[kN]	0,5	1,2
Fire exposure R90				
Tension	$N_{Rd,fi}$	[kN]	0,5	0,8
Shear	$V_{Rd,fi}$	[kN]	0,5	0,8
Fire exposure R120				
Tension	$N_{Rd,fi}$	[kN]	0,4	0,7
Shear	$V_{Rd,fi}$	[kN]	0,4	0,7

11

Setting information


Setting details (h_{nom1})

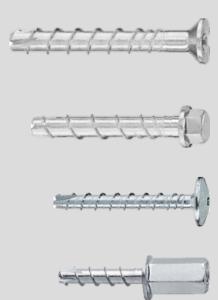
Туре	HUS	33-	Н	С	Α	P, PS	I, I(F) Flex	PL
Anchor size						6		
Nominal diameter of drill bit	d_0	[mm]				6		
Clearance hole diameter	d_{fmax}	[mm]			9			10
Wrench size	SW	[mm]	13	ı	13	1	13	-
Countersunk head diameter	d_{h}	[mm]	ı	11,5		-		
Torx size	TX			30	-	30	-	30
Depth of drill fole in floor/wall position	h _{1min}	[mm]			h _{nom}	+ 10 mm		
Depth of drill hole ceiling	h _{1min}	[mm]			h _{non}	ո + 3 mm		
Nominal embedment depth	h _{nom}	[mm]				40		
Maximum Installation Torque	T _{inst, max}	[Nm]				20		
Minimum base material thickness	h _{min}	[mm]				80		
Minimum distances								
Spacing	S _{min}	[mm]				35		
Edge distance	Cmin	[mm]				35		
Characteristic distances								
Edge distance for splitting failure	C _{cr,sp}	[mm]				60		
Spacing for concrete cone failure	Scr,N	[mm]				3*h _{ef}		
Edge distance for concrete cone failure	C _{cr,N}	[mm]			1	1,5*h _{ef}		

Setting details (h_{nom2})

Setting details (n _{nom2})				0	A	D D0	I,	DI
Туре	HUS	3 -	Н	С	Α	P, PS	I(F) Flex	PL
Anchor size						6		
Nominal diameter of drill bit	d_0	[mm]				6		
Clearance hole diameter	d_{fmax}	[mm]			9			10
Wrench size	SW	[mm]	13	-	13	-	13	-
Countersunk head diameter	dh	[mm]	-	11,5		-		
Torx size	TX	-	-	30	-	30	-	30
Depth of drill fole in floor/wall position	h _{1min}	[mm]	h _{nom} + 10 mm					
Depth of drill hole ceiling	h _{1min}	[mm]			h _{nom}	1 + 3 mm		
Nominal embedment depth	h _{nom}	[mm]				55		
Maximum Installation Torque	T _{inst, max}	[Nm]				25		
Minimum base material thickness	h _{min}	[mm]				100		
Minimum distances								
Spacing	Smin	[mm]				35		
Edge distance	Cmin	[mm]	35					
Characteristic distances								
Edge distance for splitting failure	C _{cr,sp}	[mm]	63					
Spacing for concrete cone failure	Scr,N	[mm]				3*h _{ef}		
Edge distance for concrete cone failure	C _{cr} ,N	[mm]			1	l,5*h _{ef}		

Drilling and Installation equipment

For detailed setting information on installation ,see instructions for use given with the product.


Rotary Hammers (Corded and Cordless)	TE 2 - TE 30
Other tools	Impact wrench- SIW (use recommended socket/driver bit)
	Hammer drill bit TE-CX, TE-C
	Blow out pump

PRODUCT TECHNICAL DATASHEET

HUS3 Screw anchor

Steel-to-masonry Update: Dec-25

HUS3 Screw anchor for use in masonry

High performance screw anchor for single point fastening

Anchor version		Benefits
	HUS3-H (6)	 High productivity - less drilling and fewer operations than with conventional anchors
CLIP COM A	HUS3-C (6)	- Small edge and spacing distance
	11033-0 (0)	- No cleaning required
	HUS3-A (6)	 Forged-on washer and hexagon head with no protruding thread
	HUS3-P (6)	- Through fastening
	HUS3-PL (6)	
	HUS3-PS (6)	
	HUS3-I (6)	

Base material Load conditions Solid brick Autoclaved aerated concrete Static / quasistatic

15

Drilling, cleaning, setting Other information

11

Hammer drilled holes

Hilti Technical data

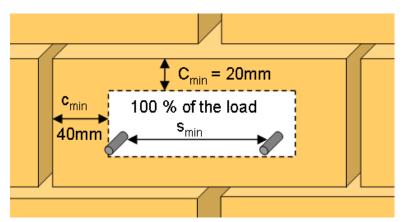
Basic loading data and design in solid masonry units based on Hilti Technical data.

All data in this section applies to:

- Load values valid for holes drilled with TE rotary hammers in hammering mode
- Correct anchor setting (see instruction for use, setting details)
 The core/material ratio may not exceed 15 % of a bed joint area
- The brim area around holes must be at least 70mm
- Edge distances, spacing and other influences, see below
- For a single anchor

Recommended loads

Anchoroiza			HUS3	A, H, I, C, P, PS, PL
Anchor size			поээ	6
Nominal embe	dmenth depth	h _{nom}	[mm]	55
		Compressive strength class	[N/mm²]	F _{rec} Tensile and shear loads
		≥ 8		0,6
	Solid clay brick Mz 12/2,0 DIN 105 / EN 771-1	≥ 10	0,7	
		≥ 12	0,8	
		≥ 16		0,9
		≥ 20		0,9
		≥ 8	0,8	
	Solid sand-lime	≥ 10		0,9
-	brick Mz 12/2,0	≥ 12		1,0
	DIN 106/EN 771-2	≥ 16		1,1
		≥ 20		1,2
	Aerated concrete PPW 6-0,4 DIN 4165/EN 771-4	≥ 6		0,4

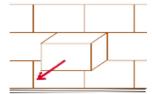

Permissible anchor location in brick and block walls

Edge distance and spacing influence

- The technical data for HUS3 anchors are reference loads for MZ 12, KS 12 and PPW 6. Due to the large variation of natural stone slid bricks, on site anchor testing is recommended to validate technical data
- The HUS3 anchor was installed and tested in center of solid bricks as shown. The HUS3 anchor was not tested in the mortar joint between solid bricks or in hollow bricks, however a load reduction is expected
- For brick walls where anchor position in brick can not be determined, 100 % anchor testing is recommended
- Distance to free edge to solid masonry (Mz and KS) units ≥ 200mm
- Distance to free edge to solid masonry (autoclaved aerated gas concrete) units ≥ 170mm
- The minimum distance to horizontal and vertical mortar joint (cmin) is started in drawing below
- Minimum anchor spacing (s_{min}) in one brick/block is ≥ 80 mm

Limits

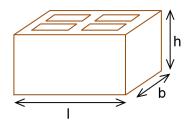
- All data is for multiple use for non-structural applications
- Plaster, graveling, lining or levelling courses are regarded as non-bearing and may not be taken into account for the calculation of embedment depth
- The decisive resistance to tension loads is the lower value of N_{rec} (brick breakout, pull out) and N_{max,pb} (pull out of one brick)


Design tension and shear resistance - Pull out / Pushing out of one brick failure modes

Pull out of one brick (tension):

$$N_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) / (2.5 \cdot 1000)$$
 [kN]

 $N_{Rd,pb} = (2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) + b \cdot h \cdot f_{vko} / (2.5 \cdot 1000)$ [kN]


* this equation is applicable if the vertical joints are filled

Pushing out of one brick (shear):

$$V_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) / (2.5 \cdot 1000)$$
 [kN]

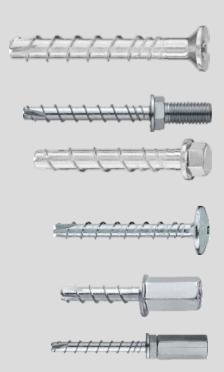
 σ_d = design compressive stress perpendicular to the shear (N/mm²)

f_{vko} = initial shear strength according to EN 1996-1-1, Table 3.4

Brick type	Mortar strength	f _{vko} [N/mm²]
Clay briok	M2,5 to M9	0,20
Clay brick	M10 to M20	0,30
All other types	M2,5 to M9	0,15
All other types	M10 to M20	0,20

Drilling and Installation equipment

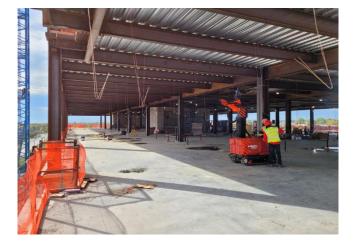
For detailed setting information on installation ,see instructions for use given with the product.


Rotary Hammers (Corded and Cordless)	TE 2 - TE 30
Other tools	Impact wrench- SIW 4AT-22 (use recommended socket/driver bit)
	Hammer drill bit TE-CX, TE-C
	Blow out pump

PRODUCT TECHNICAL DATASHEET

HUS3 Screw anchor

Metal deck Steel-to-concrete Update: Dec-25



HUS3 Screw anchor for use in concrete

High performance screw anchor for-metal deck fastening

Anchor version		Benefits
	HUS3-H(6)	- Faster installation with less drilling and
	HUS3-C (6)	fewer operations than with convetional anchors
	HUS3-A (6)	 Simpler installation with a 2 steps installation: drill and drive in
	HUS3-PL (6)	 Smaller edge and spacing than traditional expansion anchors
	HUS3-P (6)	 Removable Through-fastening and pre-setting (based on the head configuration),
	HUS3-PS (6)	(Substantial House Sollingularish),
	HUS3-IQ (6)	
	HUS3-I (6)	
8-1-1-1-1W	HUS3-I Flex (6)	
	HUS3-IF Flex (6)	

Base material

Concrete (uncracked)

Concrete (cracked)

Load conditions

Static / quasi-static

Seismic, C1

Drilling, cleaning, setting

Hammer drilled holes

Other information

Hilti Technical data

Steel to concrete connection

Static and quasi-static loading based on Hilti technical data. Design according to EN 1992-4

All data in this section applies to:

- Correct setting (See setting instruction)
- For a single anchor
- Hammer drilled holes
- No edge distance and spacing influence (see setting detail tables with characteristic distances). Only one anchor can be used in the lower flute at a time with the min.spacing between anchors along the length of the flute to be at least s = 3 hef. This datasheet does not give information for the design of fasteners in a group.
- Minimum base material thickness (see setting detail table)
- Embedment depth, as specified in the table of this section
- Concrete from C30/37 without steel fibre. For higher compressive strengths, the tension resistance may be increased by (f'c / 30)^{0,5}
- for HUS3 size 8 and 10 resistance is calculated as a minimum value based on the Hilti technical data and ETA-13/1038
- Recommended loads: With overall partial safety factor for action y = 1,4.

For anchoring into the upper flute, either use data below conservatively or refer to ETA-10/0005 and ETA-13/1038. In this case the minimum required slab thickness h_{min} must be larger than the deck thickness $h_{min,deck}$.

Design resistance for all loads directions

Туре	HUS3		H, PL, P, PS, I, I(F) Flex, IQ, A, C			
Fastener size			6			
Fastening			Redundant	Single Point		
Nominal embedment depth	h _{nom}	[mm]	35 ¹⁾	40		
Uncracked concrete						
Resistance in all load directions	F ⁰ _{Rd}	[kN]	1,3 ¹⁾	-		
Tension	N_{Rd}	[kN]	-	3,9		
Shear	V_{Rd}	[kN]	-	5,4		
Cracked concrete						
Resistance in all load directions	F ⁰ _{Rd}	[kN]	1,3 ¹⁾	-		
Tension	N_{Rd}	[kN]	-	1,4		
Shear	V_{Rd}	[kN]	-	2,9		

22

^{1.} Please refer "Requirements for redundant fastening " section

Recommended loads for all loads directions

Туре	HUS3		H, PL, I, I(F) IQ, <i>I</i>	Flex,	
Fastener size			6		
Fastening			Redundant	Single Point	
Nominal embedment depth	h _{nom}	[mm]	35 ¹⁾	40	
Uncracked concrete					
Resistance in all load directions	F^0_{rec}	[kN]	1,0 ¹⁾	-	
Tension	N _{rec}	[kN]	-	2,8	
Shear	V_{rec}	[kN]	-	3,9	
Cracked concrete					
Resistance in all load directions	F ⁰ _{rec}	[kN]	1,0 1)	-	
Tension	N _{rec}	[kN]	-	1,0	
Shear	V _{rec}	[kN]	-	2,0	

^{1).} Please refer "Requirements for redundant fastening " section

Requirements for redundant fastening

The definition of redundant fastening is given in EN 1992-4 and CEN/TR 17079. In Absence of a definition by a Member State the following parameters must be considered.

Minimum number of fixing points	Minimum number of anchors per fixing point	Maximum design load of action F _{Sd} per fixing point
3	1	2 kN
4	1	3 kN

The value for maximum design load of actions per fastening point F_{Sd} is valid in general that means all fastening points are considered in the design of the redundant structural system. F_{Sd} can be a tension, shear or inclined load.

23

Seismic loading based on Hilti technical data. Design according to EN 1992-4

All data in this section applies to:

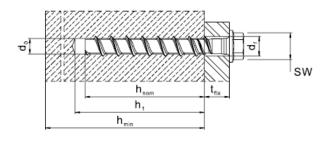
- Correct setting (See setting instruction)
- For a single anchor
- Hammer drilled holes
- No edge distance and spacing influence (see setting detail tables with characteristic distances). Only one anchor can be used in the lower flute at a time with the min. spacing between anchors along the length of the flute to be at least s = 3 hef. This datasheet does not give information for the design of fasteners in a group.
- Minimum base material thickness (see setting details table)
- Embedment depth, as specified in the table of this section
- Concrete with f'c = 30 MPa without steel fibre. For higher compressive strengths, the tension resistance may be increased by (f'c / 30)^{0,5}
- HUS3 size 8 and 10 resistance is calculated as a minimum value based on the Hilti technical data and ETA-13/1038
- $\alpha_{gap} = 0.5$ (without using Hilti filling set)

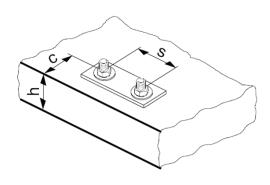
For anchoring into the upper flute, either use data below conservatively or refer to ETA-10/0005 and ETA-13/1038. In this case the minimum required slab thickness h_{min} must be larger than the deck thickness $h_{min,deck}$.

Design resistance

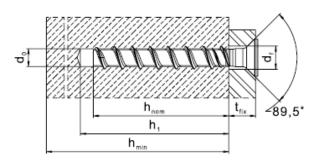
Туре	HUS3		H, PL, P, PS, I, I(F) Flex, IQ, A, C
Fastener size			6
Nominal embedment depth	h _{nom}	[mm]	40
Tension	N _{Rd,C1}	[kN]	1,4
Shear	V _{Rd,C1}	[kN]	1,6

24

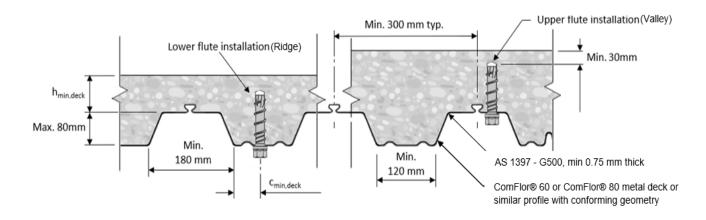

Setting information

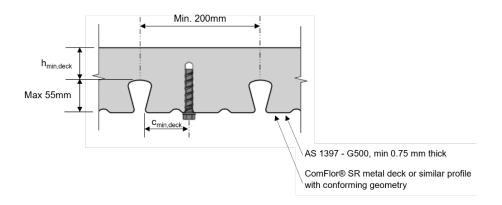

Setting details

Туре	HUS3		н	С	A, I, I(F) Flex	P, PL PS	IQ	н	С	A,I I(F)Flex	P PL PS	IQ
Fastener size						6	all le	ngths				
Nominal embedment depth	h_{nom}	[mm]			35					40		
Effective embedment depth	h _{ef}	[mm]			25					30		
Nominal diameter of drill bit	d ₀	[mm]		6								
Maximum diameter of clearance hole in the fixture	d _{f,max}	[mm]		9								
Wrench size	SW	[mm]	13	-	13	-	17	13	-	13	-	17
Countersunk diameter	dh	[mm]	-	11,5	-	-	-	-	11,5	-	-	-
Torx size	TX	[-]	T30	T30	-	T30	-	T30	T30	-	T30	-
Depth of drill hole for cleaned or uncleand hole overhead	h _{1,min}	[mm]			38					43		
Minimum base material thickness	h _{min}	[mm]					80)				
Minimum concrete thickness over upper flute	h _{min,deck}	[mm]					70)				
Minimum distances												
Spacing	S _{min}	[mm]					35	5				
Edge distance	Cmin	[mm]					35	5				
Minimum distance to edge of lower flute	C _{min,deck}	[mm]					4	5				
Characteristic distances												
Spacing	Scr	[mm]		3*h _{ef}								
Edge distance	Ccr	[mm]	4.		/ . l		1,5*					


For spacing (edge distance) smaller than characteristic spacing (characteristic edge distance) the design loads have to be reduced.

HUS3-H




HUS3-

Installation position for HUS3 anchor in metal decks :

Drilling and Installation equipment

For detailed setting information on installation ,see instructions for use given with the product.

Rotary Hammers (Corded and Cordless)		TE 2 - TE 30
Other tools	y u	Impact wrench- SIW (use recommended socket/driver bit)
		Hammer drill bit TE-CX, TE-C
		Blow out pump